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Abstract

The unprecedented rise of life-threatening antibiotic resistance (AR), combined with the unparalleled advances
in DNA sequencing of genomes and metagenomes, has pushed the need for in silico detection of the resistance
potential of clinical and environmental metagenomic samples through the quantification of AR genes (i.e.,
genes conferring antibiotic resistance). Therefore, determining an optimal methodology to quantitatively and
accurately assess AR genes in a given environment is pivotal. Here, we optimized and improved existing AR
detection methodologies from metagenomic datasets to properly consider AR-generating mutations in antibiotic
target genes. Through comparative metagenomic analysis of previously published AR gene abundance in three
publicly available metagenomes, we illustrate how mutation-generated resistance genes are either falsely as-
signed or neglected, which alters the detection and quantitation of the antibiotic resistome. In addition, we
inspected factors influencing the outcome of AR gene quantification using metagenome simulation experiments,
and identified that genome size, AR gene length, total number of metagenomics reads and selected sequencing
platforms had pronounced effects on the level of detected AR. In conclusion, our proposed improvements in the
current methodologies for accurate AR detection and resistome assessment show reliable results when tested on
real and simulated metagenomic datasets.

Introduction

The advent of high-throughput sequencing tech-

nologies, initially dubbed next-generation sequencing
(NGS), had a great impact on biomedical and environmental
sciences (Voelkerding et al., 2009). Reduced cost, rapid se-
quencing, and enhanced accuracy are only a few advantages
(Shendure and Ji, 2008); yet the biggest impact of those
technologies is opening the gates for thousands of genomic
and metagenomic studies to accelerate biological discovery
and improve knowledge about our biosphere and our own
bodies.

One of the major health problems that DNA sequencing
can help solving is the rapid emergence of antibiotic-resistant
(AR) pathogens, which are expected to cause more deaths
than cancer in 2050 (O’Neill, 2014). To address this problem,
efforts have been targeted at sequencing the genomes of AR
bacterial strains and human-associated metagenomes to track
the dynamics of AR gene transfer. However, attention has
lately been directed to tracking antibiotic resistance in the
environment, because environmental microorganisms are

believed to act as reservoirs for AR genes that can be trans-
ferred to pathogenic organisms (Martinez, 2008). AR genes
have been discovered in a plethora of environments, includ-
ing pristine ones (Bhullar et al., 2012; Brown and Balkwill,
2009; Toth et al., 2010), which could explain the continuous
emergence of novel AR genes. Thus, further studies of en-
vironmental AR genes may give better insight into their po-
tential health risks, as well as their ecological impacts on
microbial population dynamics.

Several studies used metagenomics to quantitatively and
qualitatively assess AR in various environments (Bengtsson-
Palme et al., 2014; Chao et al., 2013; Chen et al., 2013; Kris-
tiansson et al., 2011; Ma et al., 2014; Wang et al., 2013; Yang
et al., 2013; Zhang et al., 2011). However, these studies used
different NGS platforms, different methodologies for meta-
genome data analysis, different normalization procedures, and
different databases to study AR. For example, BLASTX is the
most popular method for mapping sequence reads to AR genes
(Chao et al., 2013; Chen et al., 2013; Zhang et al., 2011),
but one study (Bengtsson-Palme et al., 2014) used Vmatch
sequence analysis software (http://www.vmatch.de/). Some
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studies used the Antibiotic Resistance Gene database (ARDB)
(Chen et al., 2013; Liu and Pop, 2009; Wang et al., 2013;
Zhang et al., 2011), while others used the Comprehensive
Antibiotic Resistance Database (CARD) (McArthur et al.,
2013) and Resqu antibiotic resistance database (http://
www.1928diagnostics.com/resdb/) (Bengtsson-Palme et al.,
2014; Ma et al., 2014).

This variability of methods is typical of genomic/
bioinformatics studies, but makes the comparison of different
studies challenging, and highlights the pressing need for op-
timization and standardization of such analysis pipelines. In
addition, most of the published studies either overlooked or
falsely predicted AR conferred by mutations (e.g., AR gen-
erated by mutations in rpoB, gyrA, gyrB, parC, parE, etc.).

Mutation-generated AR is one of the major mechanisms of
resistance. These mutations usually modify the antibiotic
target in a way that makes it irresponsive to the antibiotic. In
other instances, they modify antibiotic transporters or alter
enzymes that activate antibiotic prodrugs (Martı́nez and
Baquero, 2014). Mutations could mediate resistance to sev-
eral classes of antibiotics (e.g., rifamycins, fluoroquinolones,
oxazolidinones and fusidanes). This mechanism is clinically
important because it is the principal resistance mechanism in
certain microorganisms, such as Mycobacterium tuberculosis
and Helicobacter pylori. In addition, resistance to certain
antibiotic classes (e.g., fluoroquinolones and oxazolidinones)

is almost exclusively produced via such mutations (Wood-
ford and Ellington, 2007). The spread of mutation-mediated
resistance is well evidenced for rifampin (Ferrándiz et al.,
2005) and fluoroquinolones (Balsalobre et al., 2003; Fer-
rándiz et al., 2000; Pletz et al., 2006) in clinical bacterial
isolates. Therefore, it is essential to detect such mutations
accurately, especially in metagenomic studies in which they
are often ignored or falsely assigned.

Because of the limitations of current analysis pipelines, we
set out to determine the major factors affecting accurate
quantification of AR gene abundance in metagenomes and
to optimize the current methodologies to avoid these major
confounding factors. In this context, we propose an amendment
that accounts for genes whose mutation leads to antibiotic re-
sistance. In addition, we evaluated the influence of this modi-
fication using previously published metagenomic datasets.

Materials and Methods

Methodology used for AR estimation
within an environment (resistome analysis)

First, BLASTX (Altschul et al., 1990) was used to align
metagenomic reads to AR polypeptides from the Compre-
hensive Antibiotic Resistance Database (CARD) (McArthur
et al., 2013). Reads with matches passing a threshold of 90%
identity over at least 25 amino acids (Kristiansson et al., 2011)

FIG. 1. Flowchart of proposed antibiotic resistance gene detection pipeline. CARD, Comprehensive
antibiotic resistance database; ARAI, Antibiotic resistance abundance index.
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were assigned the function of their best BLASTX hit and then
binned into appropriate AR gene classes. If a read was as-
signed to an antibiotic target gene, which could possibly have
mutation(s), it was further characterized by alignment to the
respective gene (Fig. 1). Only reads with previously reported
nonsynonymous mutations (Supplementary Table S1; sup-
plementary material is available online at ftp.liebertpub.com/
omi) were retained. Such filtering was performed by a custom
Perl script (available through: https://github.com/aelbehery/
mutation-detection).

Assessing the improved resistome
analysis methodology

We analyzed three different metagenomes (Supplementary
Table S2) using our proposed improved methodology. Me-
tagenomes were downloaded from Sequence Read Archive
(SRA). To allow direct comparison of results, precise quality
control of the data was performed as described in the re-
spective publications (Bengtsson-Palme et al., 2014; Ma
et al., 2014; Zhang et al., 2011). As previously described,
Pearf was used for quality filtering of the Swedish lake me-
tagenome (Pearf options ‘‘-q 28 -f 0.25 -t 0.05 -l 30’’). Reads
with ‡10% ambiguous bases and/or ‡50% of bases with a
Phred score lower than 20 were eliminated in the fresh water
fish pond sediment metagenome. In the case of the plasmid
metagenome, we discarded reads with a number of ambigu-
ous bases ‡3 or those contaminated by adapters. For the
analysis of the Swedish lake metagenome, we used a
threshold of 95% identity over at least 20 amino acids similar
to the stringency threshold used by Bengtsson-Palme and co-
workers (Bengtsson-Palme et al., 2014) to neutralize this
factor. In case of the fresh water fish pond sediment meta-
genome, we repeated the reported analysis (Ma et al., 2014)
using an updated version of CARD—the same version that
was used in the assessment of our method as well.

Metagenomic simulation experiments

Effect of genome size. Six bacterial chromosomes with
different lengths ranging from 0.58 Mbp to more than 10 Mbp
(Supplementary Table S3) were used to inspect the influence
of genome size on the detected number of AR reads. Each
chromosome was manually spiked with an ampC beta lac-
tamase gene (genome accession: NC_002516, position:
4594029–4595222 bp, length: 1194 bp). This was followed
by in silico metagenomic read generation for each chromo-
some separately. The in silico metagenomes were generated
with MetaSim (Richter et al., 2008) with the following pa-
rameters: error model: user-defined empirical model, made
according to software manual instructions to simulate 100 bp
reads produced by Illumina sequencing technology, read
length: 100 bp, number of reads: 100,000, mate pairs: false.
Generated reads were analyzed as described above to deter-
mine the number of AR reads for each chromosome.

Effect of AR gene length. Six genes of varying lengths,
ranging from 308–3108 bp (Supplementary Table S4), were
used to investigate the influence of AR gene length on the
number of detected AR reads. These genes were manually
inserted, evenly spaced, in the genome of Mycoplasma gen-
italium. Subsequently, 100,000 simulated Illumina reads,

each with a length = 100 bp, were generated by MetaSim and
analyzed, as described above, to determine the number of AR
reads.

Effect of number of reads. To study the effect of gener-
ated number of reads on AR gene quantification, we used the
same parameters described in assessing AR gene length to
produce varying numbers of reads (50K, 100K, 150K, 200K,
and 250K). Likewise, the reads were analyzed as described
above.

Effect of read length. To study the effect of read length
on AR gene detection and quantification, we generated sim-
ulated metagenomes with different read lengths (80, 100,
150, and 200 bp) while fixing the number of reads to 100K.
The 80 bp Illumina error model was downloaded from the
MetaSim website (http://ab.inf.uni-tuebingen.de/software/
metasim/errormodel-80bp.mconf). Error models for simu-
lating Illumina reads of 100, 150, 200, and 250 bp length were
created according to the instructions in the MetaSim manual.
Again, generated reads were analyzed as explained above.

Effect of sequencing platform. The same simulation ex-
periments used for studying the effect of AR length were
repeated, but with MetaSim’s built-in models for Roche-454
and Sanger sequencing platforms. The total number of reads
for each platform was 100,000. Average read length was
selected to be 400 bp for 454, and 1000 bp for Sanger. Gen-
erated reads were analyzed as above.

All simulation experiments were performed in triplicates.

Results

In this study, we provide an improved methodology for
accurate quantification of antibiotic resistance in metagen-
omes (resistome analysis) based on identifying a caveat in the
current AR detection pipelines. In addition, we use the im-
proved methodology to systematically assess the influence of
five potential confounding factors (Table 1) that are likely to
skew the number of retrieved AR reads.

Description of the antibiotic resistome
analysis methodology

The workflow presented here effectively addresses pitfalls
in studying AR generated by target gene mutations in meta-
genomes. The method depends on CARD, a comprehensive
AR database, which includes AR genes, AR gene SNPs, and
antibiotic target genes (cf., ARDB). CARD BLAST hits ei-
ther align to acquired AR genes or to antibiotic target genes.
The latter are carefully checked for the presence of previ-
ously reported AR-producing mutations as indicated in Ma-
terials and Methods.

We evaluated this workflow by analyzing three different
metagenomes, each previously analyzed by a different AR
detection pipeline (Tables 2 and 3). The first was a Swedish
lake metagenome (Bengtsson-Palme et al., 2014) previously
reported to have 10 AR reads. Our method detected 814 AR
hits, 20 of which were nonsynonymous mutations in target
genes (Table 2). The second metagenome was a freshwater fish
pond sediment (Ma et al., 2014). This metagenome was pre-
viously shown to contain 51.8% mutation-generated AR genes
(gyrA, gyrB, parC, parE, and rpoB). These genes are antibiotic
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target genes that, otherwise, play essential functions in bacte-
ria. When we used the updated version of CARD without
mutation screening, the ratio of target genes, which could
possibly have mutations was more or less the same (49.7%). In
contrast, after these target genes were screened for non-
synonymous mutations, only 3.3% of them contained
resistance-conferring mutations. The third metagenome was a
plasmid metagenome from a sewage treatment plant, in which
Zhang and colleagues detected 699 AR reads (Zhang et al.,
2011), while we detected 1833 reads, 61 of which were target
gene mutations.

Assessing the impact of intrinsic genome
characteristics on AR quantification results

We examined the impact of intrinsic genome characteris-
tics, such as genome size and AR gene length, on AR detec-
tion in metagenomes, using a set of in silico simulations. To
examine the effect of genome size on the number of retrieved
AR reads, we chose six sequenced chromosomes with varying
genome sizes. The same AR gene was used to spike each of
the six chromosomes, and then these spiked chromosomes
were in silico-fragmented to generate simulated metagen-
omes, which we analyzed using our method. The analysis

demonstrated that the larger the genome size, the lower the
number of retrieved AR reads. The relation fits an exponential
decay curve with a regression coefficient R2 = 0.9945 (Fig. 2).

We similarly conducted an in silico experiment to
examine the effect of AR gene length on the number of
retrieved AR reads within a metagenomic sample. In this
case, one genome was spiked with six different AR genes
with varying lengths to generate one simulated metagenome.
The number of detected AR reads was clearly linearly
correlated with AR gene length (Pearson correlation coef-
ficient r = 0.9985; R2 = 0.9931, Fig. 3). Longer AR genes
have higher chances of being detected.

Assessing the impact of technical differences
in metagenome data on AR quantification results

We similarly performed in silico simulation experiments
to assess the impact of technical differences in metagenome
data including variations in metagenome size, read length,
and sequencing platforms on the retrieved AR results. To in-
vestigate the effect of metagenome size on AR gene retrieval
and quantification, we repeated the same experiment con-
ducted to examine the effect of AR gene length, but we per-
formed the experiment on five simulated metagenomes with
five different sizes (i.e., total number of reads per metagen-
ome). A linear correlation between AR gene length and the
detected number of reads was evident for the five different
metagenomes (R2 of 50K reads = 0.9845, 100K reads = 0.9931,
150K reads = 0.9923, 200K reads = 0.9965, and 250K reads =
0.9955). Thus, the higher the number of reads, the higher the
number of detected AR reads and the steeper the curve
(Fig. 4a). To verify the linearity of this relation, we plotted the
slopes of the curves against the number of reads (Fig. 4b). The
relation was linear (R2 = 0.997).

Simulation experiments were repeated for metagenomes
with different sequence read lengths. Whereas the relation
between AR gene length and the number of detected AR reads
remained linear for all read lengths (R2 values: 80 bp = 0.9889,
100 bp = 0.9931, 150 bp = 0.9954, and 200 bp = 0.9977), se-
quence read length, per se, had no significant effect on the
number of detected AR reads. Regression lines nearly

Table 2. Comparing the Pipeline to Previously

Used Methods

Study results
Proposed pipeline

results

Study

Total
AR

reads

Target
gene

mutations

Total
AR

reads

Target
gene

mutations

(Bengtsson-Palme
et al., 2014)

10 0 814 20

(Ma et al., 2014) 9293 4621 4829 157
(Zhang et al., 2011) 699 0 1833 61

The pipeline was applied to the metagenomes after quality control
as described by their respective publications.

Table 1. Factors Affecting the Number of Retrieved Antibiotic

Resistance Reads Using Metagenomic Approaches

Factor Description Effect

Genome size Length of the genome in which
the AR gene is found.

The larger the genome size, the lower the
chance of an AR gene in this genome
to be represented in the metagenome.

AR gene length Length of the AR gene from which
AR metagenomic reads are generated.

The longer the AR gene, the higher the
chance it will generate more AR
metagenomic reads.

Metagenome size The total number of reads of a metagenome The larger the metagenome size the
larger the number of retrieved AR reads.

Read length The average length of metagenomic
reads. It varies for different platforms

Read length showed no significant effect
on the number of retrieved AR reads.
Nevertheless, reads need to be longer
than the minimum alignment length set
in the AR detection pipeline (at least 75 bp)

Platform Sequencing platform used for
generation of the metagenomic
reads.

Each platform produces significantly different
results due to differences in sequencing errors.
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superimposed (Fig. 5), and analysis of variance (ANOVA)
confirmed that the detected AR reads of all read lengths tested
were not significantly different ( p = 0.9981).

The effect of three different sequencing platforms, namely
Illumina, Roche-454, and Sanger was studied (Fig. 6). In-
terestingly, the linearity of the relation between AR gene
length and the number of detected AR reads was not affected
by platform change (R2 values for the different platforms
were 0.9521, 0.9971, and 0.9773 for 454, Illumina, and
Sanger, respectively). However, the number of detected AR
reads was highest in case of Sanger, followed by Illumina,
followed by 454. Slopes of the curves for the different plat-
forms were significantly different from one another (ANOVA:
p < 0.0001; Tukey’s post hoc multiple comparison: 454 vs.
Illumina: p < 0.0001, 454 vs. Sanger: p < 0.0001, Illumina vs.
Sanger: p < 0.0055).

Discussion

In an attempt to improve antibiotic resistome analysis, we
tested, optimized, and improved current AR detection
methodologies, and we suggest specific modifications to the
currently used pipelines (Fig. 1). Additionally, we tested our
workflow on various published and simulated metagenomes
to evaluate the methodology and to study factors that may
affect the number of retrieved AR reads.

Of note, although sequence identity alone does not neces-
sarily imply functional similarity, sequence similarity remains
the standard method for function prediction in metagenomics,
because high-throughput sequencing technologies produce
relatively short reads. Therefore, similar to previous methods,
we relied on BLASTX to detect resistance genes. To avoid
false predictions based on partial similarities, we used a rather
stringent threshold (90% identity over ‡25 amino acids) for
selection of positive AR reads, a threshold previously sug-
gested (Kristiansson et al., 2011). This threshold was selected
because we mainly wanted to shed light on the abundance of
known antibiotic resistance genes or altered target genes. An-
other target of resistome studies is, of course, gene discovery.
In that case, we suggest using less stringent thresholds. When
new resistance gene discovery is the purpose, choosing as-
semblies and filtering them with different methods (including
Hidden Markov Models, protein family analysis, and motif
analysis) is recommended.

FIG. 2. Metagenomic simulation experiment to test the
effect of genome size on the number of detected AR reads.
The detected AR reads in each of the six different chromo-
somes, manually spiked with the same AR gene, are pre-
sented. The larger the genome size, the lower the number of
retrieved AR reads. R2 = 0.9945.

FIG. 3. Metagenomic simulation experiments to test the ef-
fects of AR gene length on the number of detected AR reads. Six
different AR genes with varying lengths were introduced into
one chromosome, which was fragmented using MetaSim. The
number of AR reads detected in this simulated metagenome are
presented. The longer AR gene, the higher its chance of being
detected. Correlation coefficient r = 0.9985; R2 = 0.9931.

a

b

FIG. 4. Metagenomic simulation experiments to test the
effects of metagenome size on the number of detected AR
read. (a) A plot showing the relation between AR gene
length and the number of detected AR reads for five dif-
ferent metagenome sizes (50, 100, 150, 200, and 250
thousand reads). (b) A plot between the slopes of the 5
curves shown in (a) and metagenome size. R2 = 0.9970.
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The major improvement in our methodology is allowing the
sensitive but accurate identification of AR conferred by muta-
tions. Several metagenomic studies for AR detection largely
relied on the Antibiotic Resistance Genes Database (ARDB)
(Liu and Pop, 2009), the first antibiotic resistance database de-
veloped (Table 3). However, ARDB does not account for AR
resulting from target gene polymorphism. Therefore, studies
relying on the ARDB database alone accounted for acquired or
horizontally transferred AR and neglected mutational AR. Later,
CARD was launched, and it included antibiotic target genes
(e.g., rpoB, gyrA and gyrB). However, these are highly con-
served housekeeping genes and are therefore present in virtually
all bacteria, where they perform essential cellular functions (Gil
et al., 2004). Accordingly, the mere presence of such genes is
completely uncorrelated with resistance, and assigning these
genes for AR prior to mutational scanning would be false. We

showed a decrease of detection from*50% to 3.3% in one such
cases (see Results). Therefore the use of BLAST alone does not
reveal the mutations that confer AR. This is particularly true
when dealing with short reads that do not cover the full range of
the AR gene. In such cases, even the most stringent BLAST
search, with a 100% identity threshold, can align a short meta-
genomic read to the region of the antibiotic target gene that does
not contain a resistance-generating mutation.

This limitation may explain the large discrepancy described
by Chao and colleagues for results obtained with ARDB versus
CARD (Chao et al., 2013). Similarly, this observation most
likely accounts for the high rifampin resistance reported by Ma
et al. (2014) in an environmental sample. Rifampin resistance
is mediated by mutations in rpoB, a conserved essential gene,
that it is used as a molecular marker (Case et al., 2007). Resqu
(http://www.1928diagnostics.com/resdb/), a more recent AR
database compared to ARDB (last updated July 3, 2009), has
also been used for AR screening of metagenomes (Bengtsson-
Palme et al., 2014). Like ARDB, Resqu only includes hor-
izontally transferred antibiotic resistance genes. However, this
database is currently not being updated.

Comparing our methods to the former ones showed an
improvement in AR detection to cover a wider range of the
bacterial resistome. Our proposed workflow detected 2.6
times more AR reads in a plasmid metagenome (Zhang et al.,
2011), compared to using ARDB, and detected over 80 times
more AR reads in a Swedish lake metagenome (Bengtsson-
Palme et al., 2014). This could be explained by (i) the de-
tection of reads pertaining to mutated antibiotic target genes,
which were missed in the original studies; (ii) Database dif-
ference, since CARD is maintained up to date in contrast to
ARDB and is apparently more comprehensive than Resqu.

On the other hand, careful checking of reads for resistance-
producing mutations prevented false positive assignment of
AR in a metagenome. This specificity was evident as we only
detected 3.3% of AR reads in the freshwater fish pond sedi-
ment (Ma et al., 2014), in contrast to the original report,
suggesting that mutational AR reads constituted *50% of

FIG. 5. Metagenomic simulation experiments to test the effect of read length on the
detected number of AR reads. Simulation experiments were repeated for four different
read lengths. Detected AR reads linearly correlated to AR gene length for all read lengths
(R2 values: 80 bp = 0.9889, 100 bp = 0.9931, 150 bp = 0.9954 and 200 bp = 0.9977). Re-
gression lines nearly superimposed (ANOVA shows no significant difference, p = 0.9981).

FIG. 6. Effect of three different sequencing platforms on
the number of detected AR reads. Simulation experiments
were repeated using the error models of three different se-
quencing platforms (Sanger, Roche-454, and Illumina). Re-
gression lines were significantly different from one another
(ANOVA: p < 0.0001; Tukey’s post hoc multiple comparison:
454 vs. Illumina: p < 0.0001, 454 vs. Sanger: p < 0.0001, Il-
lumina vs. Sanger: p < 0.0055).
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detected AR reads (Ma et al., 2014). Of note, Ma and col-
leagues showed that rifampin resistance comprised more than
35% of total detected resistance, all of which were attributed
to rpoB gene. On the contrary, careful mutational scanning of
rpoB reads, for resistance-generating mutations show that it
only represents 3.1% of total resistance.

Therefore, compared to existing AR screening methods,
our method not only provides a higher coverage of the bac-
terial resistome since it detects more horizontally transferred
AR genes, but also precisely accounts for mutation-generated
AR. In other terms, we improved the sensitivity and speci-
ficity of AR gene detection and resistome estimation in me-
tagenomes. Our method also takes in consideration the
strengths and limitations of different databases, and conse-
quently recommends CARD for AR detection since it in-
cludes mutated antibiotic target genes in contrast to ARDB
and Resqu databases. Ideally, a well-curated custom database
that includes antibiotic target genes, and resistance-generated
mutations therein, is equally recommended. Interestingly, a
recent article (Xavier et al., 2016)—published while this ar-
ticle was being reviewed—also recommends using CARD
for AR annotation, especially for whole genome and meta-
genomic sequences. This recommendation was based on
better annotation not only of gene names, but also at the
variant level. Besides, CARD predicted the maximum num-
ber of resistance genes in the metagenomic assessment con-
ducted by Xavier and colleagues.

In addition to covering a wider spectrum of resistance
genes and mechanisms while screening AR in metagenomes,
our method is quantitatively more accurate. Inaccurate esti-
mation of AR gene abundance does not only come from false
positive assignments (e.g., unmutated rpoB picked up as a
resistance gene), but also from miscalculation of gene
abundance, usually due to lack of proper normalization.

In this study, we systematically investigated the influence
of different intrinsic genome variation and technical differ-
ences in metagenomes on AR detection and quantification in
metagenomes. The different factors tested were size of bac-
terial genomes carrying AR genes (assumed to be within a
metagenomic sample), AR gene length, metagenome sample
size (expressed in number of reads), and metagenomic read
length. Additionally, the impact of sequencing platform was
investigated through the comparison of three different widely
used sequencing platforms. We found that genome size in-
fluences the number of detected AR reads. In metagenomics,
it is still hard to infer the size of the genome from which an
AR gene is derived; nevertheless this finding suggests that
plasmid-encoded AR genes are more likely to be detected and
represented in metagenomic data than chromosomal AR
genes. This genome size effect could falsely increase the
relative abundance of plasmid-encoded AR genes.

The second factor investigated was the total number of
metagenomic reads. Most studies take this factor into account,
and routinely normalize abundance data by dividing the
number of detected AR reads by the total number of metage-
nomic reads. Results are then reported as the percent relative
abundance or part per million (ppm) (i.e., read per million
reads) (Chao et al., 2013; Chen et al.; 2013, Kristiansson et al.;
2011, Ma et al., 2014; Wang et al., 2013; Yang et al. 2013).

The third factor that we inspected was the length of target
AR genes. Bengtsson-Palme et al. (2014) considered this
factor and normalized their data by dividing the number of hits

for each gene by its gene length; but instead of further nor-
malizing to the total number of reads, they normalized to the
number of 16S reads within the same sample (Bengtsson-
Palme et al., 2014). Although this is a decent way to normalize
for selected genes in a metagenome, especially if the envi-
ronment is a mixed prokaryotic-eukaryotic ecosystem, it ne-
glects phage contribution to antibiotic resistance (Balcazar,
2014). Future studies should consider double normalization, in
which the number of hits is divided by (i) target gene length
and (ii) number of reads per metagenomic sample.

In our study, we could also confirm that sequence read
length has negligible effect on the number of detected AR
reads, as long as the read length is longer than the BLAST
alignment cutoff, which should be easily adjusted. Although
different sequencing platforms may produce quite different
ranges of read lengths, we found that read length is not the
major factor behind platform-to-platform discrepancies. In-
stead, we hypothesized that other factors such as sequencing
error rate and nature of error are major players in accurate
quantification of AR genes.

Several NGS technologies have been developed; yet Ill-
munia and Roche-454 have been the most frequently used
platforms in recent years (Li et al., 2014), and have been used
in a large number of publicly available metagenomes. Al-
though Roche-454 produces longer reads (700 bp versus
300 · 2 bp in case of Illumina), it has longer run time and
lower throughput compared to Illumina (Scholz et al., 2012).
With regards to error rates, Roche-454 has the lowest average
substitution error rate amongst NGS platforms (Kircher and
Kelso, 2010), but has a relatively high indel error rate espe-
cially in homopolymer regions (Luo et al., 2012). In contrast,
Illumina has high substitution and low indel error rates
(Fuellgrabe et al., 2015).

Indeed, we showed that different platforms produce signif-
icantly different results for the same set of genes. Sanger se-
quencing retrieved the highest numbers of correctly detected
AR reads, which we believe is a result of the higher accuracy of
Sanger output compared to other sequencing platforms (Fuller
et al., 2009). However, these results do not take into account
Sanger’s cloning bias (Liang et al., 2011) nor the low
throughput of this method (Fuller et al., 2009). Illumina had
higher numbers of detected AR reads than Roche 454, probably
because of the lower rate of indel errors in Illumina chro-
matograms compared to those generated by 454 (Diguistini
et al., 2009). Indels greatly affect BLASTX results because
they typically introduce frameshifts that may allow an AR read
to fail the set cutoffs, thus generating a false negative result.

Based on the factors stated above, we propose an antibiotic
resistance abundance index (ARAI) for effective normali-
zation of AR levels, in a similar way to the recently suggested
‘‘phage abundance index’’ (Aziz et al., 2015). ARAI takes
into account target gene length and total number of reads in a
given metagenome, as shown by the equation below.

ARAI¼+
number of reads of a given AR gene

gene length · total number of reads

Conclusions

In conclusion, we improved existing methodologies for
screening and quantifying AR genes in any sequence dataset
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(typically metagenomic sequence libraries). These modifi-
cations take into account the limitations of current methods
(e.g., Ma et al., 2014 and Chao et al., 2013). Our method uses
the CARD database and carefully considers resistance-
producing mutations of target genes in metagenomic reads to
identify a wider range of resistance in a given environment,
while avoiding false positive results caused by over-
recruitment of wild-type antibiotic target genes.

If a study is only interested in acquired or horizontally
transferred AR genes, using ARDB, or the more recent Resqu
database, is recommended—provided these databases are
well maintained and regularly updated. Similarly, CARD
website now offers a subset download of the database that
excludes genes conferring resistance via mutations, and this
would work as well for acquired AR resistome assessment.

We discourage the direct comparison of AR from different
platforms and recommend the use of ARAI as a quantitative
measure of AR in metagenomes. ARAI relies on double
normalization and is thus neither sensitive to AR gene length
nor metagenomic sample size. Future efforts should be di-
rected to an efficient algorithm for inter-platform normali-
zation as well as a method to take genome size into account.
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